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Mathematics is such a vast and rapidly expanding field of study that there are
inevitably many important and fascinating aspects of the subject which do not find
a place in the curriculum simply because of lack of time, even though they are well
within the grasp of secondary school students.

Some classes and many individual students, however, may find time to pursue
mathematical topics of special interest to them. The School Mathematics Study
Group is prepating pamphlets designed to make material for such study readily
accessible. Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extended manner or from a novel point of view, Others deal
with topics not usually found at all in the standard curriculum.

This particular series of pamphlets, the Reprint Series, makes available ex-
_-ository articles which appeared in a variety of mathematical periodicals. Even if
the periodicals were available to all schools, there is convenience in having articles
on one topic collected and reprinted as is done here,

"This series was prepared for the Panel on Supplementary Publications by
Professor William L. Schaaf. His judgment, background, bibliographic skills, and
editorial efficiency were major factors in the design and successful completion of
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PREFACE

Music means different things to different people and exhibits many faces:
musical sounds and tones; scales and modes; musical notation; harmony and
dissonance; rhythm, melody and counterpoint; musical composition and forms;
the human voice and choral music; orchestral and symphonic music; acoustics
and the reproduction of music by phonograph, radio, T-V, sound motion pic-
cures. In what ways, if any, are these various facets of music related to mathe-
matics? What has mathematics coneributed to musical notation? to the theory
of composition? to the design of musical instruments? to the high-fidelity

reproduction of music? I the composer aware of mathematical relations in-
volved in music and musical composition? Can the mathematician, as mathe-
matician, entich the domain of the musician? These are questions more easily
asked than answered. Moreover, such answers as have been given are, for the
most part, scatcered through various periodicals, often inaccessible. That is why
we have brought these essays together for your enjoyment. It is hoped that
they will at least open new horizons for you, even if they do not answer your
questions completely. You may then agree with Morris Kline when he says
“ehe most abstract of the arts can be cranscribed into the most abstract of the
sciences, and the most reasoned of the arts is clearly recognized to be gkin o
the music of reason.”

—~William L. Schaaf
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FOREWORD

Nearly three hundred years ago, Leibniz, the philosopher and a coinventor
of the calculus, had this to say: “Music is the pleasure that the human soul
experiences from counting -ithout being aware that it is counting”. In more
recent times, the renowned architect, theosophist and philosopher Claude
Bragdon once observed that “music is number made audible, architecture is
number made visible™.

These two observations would seem to justify the conviction that music,
at least in some of its aspects, is somehow intimately and inextricably associated
with numbers and their properties. The early Greek mathematicians of the
Pythagorean School were firmly convinced of this. Since ancient times, men
have known that the pitch of a sound from a plucked string depends upon its
length, and that if the ratios of the lengths of the strings are simple whole
numbers, the resulting sounds will be harmonious. Specifically, Pythagoras
was aware that lengths which sounded a note, its fifth and its ocrave were in
the ratio 2:3:4. In fact, Pythagoras and his disciples believed that the dis-
tances of the astronomical planets from the carth were also in a musical pro-
gression, and that therefore the heavenly bodies, as they moved through space,
gave forth harmonious sounds: whence arose the phrase "the harmony of the
spheres”. The Pythagoreans fully believed that the only explanation of the
order and harmony and perfection in the Universe was to be found in the
science of numbers, or arithmetiké.

tndeed, this conviction was so deep-rooted that for 1500 years, from the
time of Pythagoras to the Middle Ages, men classified knowledge as the Seven
Liberal Arts: the trivium (grammar, rhetoric, and logic) and the quadrivium
(arithmetic, astronomy, geometry, and music). Furthermore, the mathematical
sciences were thought of as follows: numbers absolute, or arithmetic; numbers
applied, or music; magnitudes at rest, of SEOMELry; magnitudes in motion, of
astronomy.

What have other observers said about music and mathematics? Listen to
J. ]. Sylvester, the brilliant, poetic, temperamental British mathematician of
‘he mid-nineteenth century who contributed so much to the theory of invariants
and matrices: "Mathematics is the music of Reason. The musician feels Mathe-
matics, the mathematician thinks Music”. Or again, the opinion of Helmbholz,
more the physicist than the mathematician: “Mathematics and Music, the most
sharply contrasted fields of scientific activity, are yet so related as to reveal the
secret connection binding together all the activities of our mind”. Finally, from
the pen of Havelock Ellis, the celebrated author of the “Dance of Life” and
perceptive interpreter of civilization and culture: "It is not surprising that the
greatest mathematicians have again and again appealed to the arts in order tO
£nd some analogy to their own work. They have indeed found it in the most
varied arts, in poetry, in painting, and in sculpture, although it would certainly
seem that it is in music, the most abstract of all the arts, the art of number
and of time, that we find the closest analogy.”



The Two Most Original Creations
of the Human Spirit

ELMER B. MODE

*I'he science of Pure Mathematics, in its modern developments, may claim to
be the most original creation of the human spirit. Another claimant for this posi-
tion is music.”

A.N. WHITEMEAD, Science and the Moders World.

1. Introduction. In the -uotation given above a great Anglo-American
philosopher [11 characterized two distinct fields of human interest, on¢ a
science, the other an art. The arts and the sciences, however, are not mutuily
exclusive. Art has often borrowed from science in its attempts to solvs is
problems and to perfect its achicvements. Science in its higher forms has many
of the attributes of an art. Vivid aesthetic feelings are not at all foreign in the
;vork of the scientist. The late Professor George Birkhoff, in fact, wrote as
ollows:

“A system of laws may be beautiful, or a mathematical proof may be
elegant, although no auditory or visual experience is directly involved in either
case. It would seem indeed that all feeling of desirability which is more than
mere appetite has some claim to be regarded as aesthetic feeling.” {2]

Serge Koussevitzky, noted conductor, has stated also that “there exists a
profound unity between science and art.” [3]

It is not, however, the purpose of this paper, to discuss the relationships
berween the sciences and the ares, but rather to enumerate some of the lesser
known attributes which music and mathematics have in common. There is no
attempt to eseablish a thesis.

2. Number and Pitch. The study of mathematics usually begins with
the natural numbers or positive integers. Their symbolic representation has
been effectively accomplished by means of a radix or scale of ten, the principle
of place-value where the position of a digit indicates the power of ten to be
multiplied by it, and a zero. The concept of number is most basic in mathe-
matics. We cannot directly sense number. A cardinal number, such as five, is
an abstraction which comes to us from many concrete instances each of which
possesses other artributes not even remotely connected with the one upon which
our interest is fixed. Such widely differing groups as the fingers of the hand, the
sides of the pentagon, the arms of a starfish, and the Dionne quintuplets, are
all inseances of "fiveness,” the property which enables cach group to be matched
or placed into one-to-one cortespondence with the other. The establishment of
such equivalence requires no knowledge of mathematics, only good eyesight.
With these facts in mind we may state a definition familiar to mathematicians.
The (cardinal) number of o group of objects it the invariant property of the
group and all other groups which can be matched with it.

The positive integers constitute, however, but a small portion of the
aumbers of mathematics. The former mark off natural intervals in the con-
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tinuum of real numbers. The differance between two small groups of objects
is readily sensed; man finds no difficulty in distinguishing visxally, at once,
between rbree and four objects, but the distinction between, say, thirty-two and
thirty-three objects calls for something more than good vision,

In music, study begins with noces of tones. In western music their symbolic
representation is accomplished by means of a scale of seven, g principle of posi-
tion, and the rest, which denotes cessation of tone. There is something perma-
nent and unchangeable about a given note. You may sing it, the violin stri
may emit it, the clarinet may sound it, and the trumpet may fill the room
with it. The quality or timbre, the loudness or intensity, and duration of one
sound may be markedly different from another; yet among these differences of
sound there remains one unchanging astribute, its pitch. This is the same for
a single such note or any combination of them. The pitch of a note may then
be defined as the invarians propersy of the note and all other notes which may
be matched with is. Noges which can be matched are said o be in unison, Pitch,
also, as an abstraction, derived from many auditory experiences. The establish.
ment of pitch equivalence does not require a knowledge of music, only a keen
ear.

The notes of the diatonic scale mark off convenient intervals in a con-
tinuum of pitches. Wichin a given range, the interval berween two tones of the
scale is, in general, readily sensed, but outside of such a range the human ear
may fail to distinguish between or even to hear two differing tones. As a mat.
ter of fact, “tones” removed from the range of audibility cease to be such. As
psychological entities they disappear and may be identified only as vibrations
in a physical medium. )

Invariance of pitch is an important musica] property and the ability of a
musician nor playing a k~yed instrument to maintain this property for a given
note is a necessary, but not a sufficient condition for his artistry. This recalls the

pupil, sprang suddenly from the piano, thrust his fingers wildly through his
hair, and shouted:; "] play the white notes, and I play the black notes, but you
sing in the cracks,”

Music also is distinguished by a universal symbolism. The creation of
anything but the simplest musica composition or the transmission of sig-
nificant musical ideas is difficult if not impossible without the symbols of music,

Incidentally it may be remarked that the page of 2 musical score and the
page of & book in calculus are equally unintelligible to the uninitiated. There
are very few fields of activity outside of mathematics (including logic) and
music which have developed so extensively their own symbolic language.
Cbcmi.strymdphoneticsareneuminchismp«t.
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In both music and mathematics preliminary training involves the acquif-
ing of technique. Mathematics demands such facile manipulation of symbols
that the detailed operations become mechanical. We are encouraged to elimi-
nate the necessity for elementary thinking as much as possible, once the funda-
mental logic is made plain. This cleass the way for more complicated processes
of reasoning.

“It is a profoundly erroneous truism, repeated by all copy-books and by
eminent people when they are making speeches, that we should cultivate the
habit of thinking of what we are doing. The precise opposite is the case.
Civilization advances by extending the number of important operations which
we can perform withour thinking about them.” {4}

In music also, the preliminary training involves a learning of technique.
The aim here is to be able to read, or to write, or to translate into the appro-
priate physical actions, notes and combinations of them with such mechanical
perfection that the mind is free for the creation and the interpretation of more
profound musical ideas.

4. Logical Structure. The framework of a mathematical science is well
known. We select a class of objects and a set of relations concerning them.
Some of these relations are assumed and others are deduced. In other words,
from our axioms and postulates we deduce theorems embracing important
properties of the objects involved.

Music likewise has its logical structure. The class of objects consists of
such musical elements as tones, intervals, progressions, and rests, and various
relations among these elements. In fact, the structure of music has been formally
described as a set of postulates according to the customary procedure of mathe-
matical logic. {5]

In mat, .matics a development is carried forward according to the axioms
or postulates. If these are obeyed the results are correct, in the mathematical
sense, although they may not be interesting or useful. Mere obedience to law
does not create an original piece of mathematical work. This requires technical
skill, imagination, and usually a definite objective.

Music also has its axioms or laws. These may be as simple as the most
obvious things in elementary mathematics — the whole equals the sum of all
its parts — if we are counting beats in a measure; they may be less obvious to
the layman, such as the canons of harmony or the structural laws of a classical
symphony. Here again we may follow the laws of music scrupulously without
ever creating a worth-while bit of original music. Technical skill, imagination,
the fortunate mood, and usually a definite objective are requizites for the crea-
tion of a composition which not only exhibits obedience to musical lavs but
expresscs significant ideas also. Occasionally the musician becomes bold and
violates the traditional musical axioms so that the resulting effects may at first
sound strange or unpleasant. These may become as useful, provoking, and en-
joyable, as a non-Euclidean geometry or & non-Aristotelian logic. In such man-
ner did Wagner, Debussy, Stravinsky, and others extend the bounds of musical
thought. In mathematics as well as in music one may have to become accus-
tomed to novel developments before one learns to like them.

5
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acterizes the opening theme of Beethoven’s Fifth Symphony as one which “im.
mediately, in its ominous and arresting quality, throws the mind into a certain
state of expecrance, a stote where a large number of happenings belonging to
a cerrin class, can logically follow." {61 The same is true of the opening
phrase of the prelude o Tristan and Isolds, or any really greac enduring
masterpiece,

a musical work — ‘an inductive symphony.’

5. Meaning. A mathematica] formula represents o peculiarly succinct and
accurate representation of meaning which cannot be duplicated by any other
means. It is concerned with the phenomenon of variability; it involves the
function concepe, “A mathematical formula can never tell us what a thing is,
but only how it behaves,” {7}

How true this is of music! A theme of great music compresses into a
small interval of space or time, inimitably and accurately, a remarkable wealth
of meaning. Music is not fundamentally concerned with the description of

static physical object:.i, but with the impressions they leave under varying aspects,

is often not in the physical man bue in his changing moods, in his emotions.
One of the sources of the greatness of "Die Walkiire” is Wagner's genius for
portraying vividly the conflicting aspects of Wortan's nature — g5 8od and as



theme demands more than the casual hearing before its deep significance is
completely appreciated. It is often worked up from an entirely insignificant
motive as in Beethoven's Fifth Symphony or in Mozart's G minor symphony.
In mathematics a basic formula or equation may have implications which can
be understood only after much study. It may appear t0 be almost trivial as in
the case of ¢ + & == & + a or it may be less obvious and more elegant as in
the case of Laplace’s equation,

Pu + 'y

-a‘;; a;,:O.

Music consists of abstractions, and at its best gives expression to concepts
which represent the most universal features of life. Beethoven's music expresses
powerfully the great aspirations, struggles, joys, and tragedies of human exist-
ence. The Eroica symphony may have been composed with Napoleon in mind
but it portrays far more than the career of a single man. It is a portrayal of
the heroic in man and as such is universal in its application. It is well known
that a musical passage or composition may produce different responses among
people. The possibility of varying interpretation constitues one of the soufces
of music’s uniqueness and a reason for its power. It is an evidence of its uni-
versality. Herein lies a fundamental difference between music and painting or
sculpture. The effect of a musical episode is due to its wide potential emotional
applicability; the effect of a painting or piece of sculpture is due to its con-
creteness. Attempts at abstract representations by painters have not been gen-
erally successful; attempts ac stark realism in music have likewise failed. Music
in 1ts most abstract form, as for example, Bach's or Mozart's, often defies ap-
plication to the concrete. It seems to be above mundane things, in the realm of
pure spirit.

So it is with mathematics. Qur conclusions are always abstract, and universal
in their application, although they may have originated from a special prob-
lem. The possibilities of interpretation and application of a given theorem or
formula are unlimited. Poincaré is reported to have said that even the same
mathematical theorem has not the same meaning for two different mathema-
ticians. What differing reactions may ensue when Laplace’s equation is set up
before an audience of mathemzticians! What differing degrees of abstractness
are suggested by the two equations previously written!

6. The Creative Process. “It is worth noting . .. that it is only in mathe-
marics and music that we have the creative infant prodigy; . . . the boy mathe-
matician or musician, unlike other artists, is not utilizing a store of impressions,
emotional or other, drawn from experience or learning; he is utilizing inner
resources. . . . 18}

Statements of this type have led many to believe that mathematical talent
and musical talent have more than an accidental relation. Some feel that
mathematicians are more naturally drawn to music than musicians are to
mathematics. As far as the writer has been able to ascertain, no serious investi-
gations on the relation between the two ralents have been published. A brief
study of exceptionally gifted children yields no testimony that the child prodigy

7



in music has more than the average mathematical sense, or that the child
prodigy in mathematics has exceptional ability in music.

In a recent article, Mind and Music, {9} the inimitable English music
critic, Ernest Newman, discusses the role that the subconscious mind might

cannot affirm, of course, that these opinions concerning the creative process
are confined solely to music and mathematics, but it is interesting that they
are voiced by two eminent scholars, one from each field,

The greatest works of music are distinguished by their intellectual content
as well as by their emotiona] appeal. The sacred music of Bach, the symphonies
of Beethoven, or the operas of Wagner, offer subjects for analysis and discus-
sion, as well as opportunities for emotional experience. Each composer had
ideas to “work out,” ideas o be developed and clarified by the forms and
artifices of music, the object being to make their full significance felt by the
appreciative listener,

7. Aesthetic Considerations. To many, mathematics seems to be a for-
bidding subject. Its form seems 1o be more like that of a skeleton than that
of a living, breathing, human body. This idea, is, of course, derived from jgs
abstract character and from the demands which it makes for sharply defined
concepts, terse methods of expression, and precise rules of operation. In a
sense, mathematics lacks richness, if by richness we mean the presence of those
impurities which impart savor and color. These impurities may be in the nature
of concrete examples, illustrations from, or applications to fields other than

mathematics. They may represent departures from the norma] abstract logical
development, and may make no contribtftions whatsoever to the formal struc-

8
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ture which constitutes mathematics. But if we subtract from the richness of
mathematics, we add also to its purity, for in mathematics the structure or form
is more important than its applications. We may apply the mathematics to
many problems associated with human existence, but these applications are
not essential parts of pure mathematics, they lie apart from it. ‘

“In music the flavor of beauty is purcst, but because it is purest it is also
least rich. . .. A melody is a pure form. Its content is its form and its form is
its content. A change in one means a change in other. We can, of course, force

an external content upon it, read into it stories or pictures. But when we do so
we know thar they are extraneous and not inherent in the music.” {11]

In a different sense mathematics is over-rich for its fields are unlimited in
extent and feraility.

“Bur no one can traverse the realm of the multiple fields of modern
Mathematics and not realize that it deals with a world of its own cieation, in
which there are strangely beautiful flowers, unlike anything to be found in the
world of external entities, intricate structures with a life of their own, different
from anything in the realm of natural science, even new and fascinating laws
of logic, methods of drawing conclusions more powerful than those we depend
upon, and ideal categories very widely different from those we cherish

most.” [12}

One needs here but to change a few words in order to describe the unique
and lovely creations of music. The melodies and harmonies of music are its own
inventions. They are often mysteriously beautiful, incapable of description by
other means and without counterpart elsewhere in the world about us. A
musical composition may be of the utmost simplicity or of the most intricate
character, yet it may “well-nigh express the inexpressible.” It is exactly this
ability to convey the “inexpressible” ideas that give mathemartics and music
much in common. The mathematics student who seeks always a meaning or
picture of each new proposition often fails to appreciate the power of that
which defies representation.

8. Conclusion. There is much of interest to those who love both music
and mathematics, and much has been written by mathematicians on the bear-
ings of one field on the other. Archibald has written delightfully of some of
their human aspects as well as the scientific. Birkhoff has attempted the evalua-
tion of musical aesthetics by quantitative methods. Miller and others have
brought the instruments of physics to bear upon the problems of musical tone
and acoustics.

Success in music and in mathematics also depend upon very much the
same things — fine technical equipment, unerring precision, and abundant
imagination, a keen sense of values, and, above all, a love for truth and beauty.

9
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Mathematics of Music
ALl R. AMIR-MOEZ

Though music may seem far removed from what many think are the cold
logical aspects of mathematics, nevertheless, music, with its emotional appeal,
has a mathematical foundation. The following article will show how highly
mathematical are the sounds, the scales and the keys (the parts, so 0 speak)
of music.

1. Harmonics of a Sound: When a sound is made, for example, by
striking a string of a musical instrument, each particle of air next to the source
of the sound vibrates. We shall call the number of vibrations of that particle
of air in one second the number of vibrations of the sound. The larger this
number is, the higher the pitch of the sound becomes.

Suppose a sound is called C, and its number of vibrations is ¢. That is, if,
for example, the sound C, and its number of vibrations is ¢. That is, for ex-
ample, the sound C makes a particle of air vibrate five hundred times in one
second, we say c==500. It was discovered by Greek mathematicians that if afeer
the sound C is heard we make another sound S whose number of vibrations is
ewice the number of vibrations of C, ie., 2¢, then S will be pleasant to hear.
As far as the history of mathematics shows, this idea is due to Pythagoras. The
sound T with three times as many vibrations, i.e., with 3c vibrations, is also
pleasant to hear after C. This fact is true for sounds with vibrations c, 2c, 3c, 4c,
Sc, etc. Usually, if we play these sounds successively in some order with a certain
thythm, we call it a melody. If we play a few of these sounds together, we call
it harmony. '

We shall call the sounds with vibrations 2c, 3¢, 4c, etc. harmonics of C.

2 A Primitive Scale: In the work of Omar Khayyani*, it is mentioned
that the study of the ratios of integers is essential for the science of music. That
was the only mathematics used in the Greek theory of music. To explain the
idea, we start with the sound C, and we suppose that C, is the name of the sound
with 2c¢ vibrations. Let us call G, the sound whose number of vibrations s 3c.
(We shall explain why we have chosen these names.) If a sound with twice as
many vibrations is a harmonic of a given sound, it is reasonable to believe that
the sound G with one-half as many vibrations as G, is a harmonic of C. Thus
we can say that the sounds C, G, and C, are harmonic of one another, and their

vibrations are, respectively, ¢, “’., and 2c. We can compare these sounds and
their vibrations by constructing the following table.

Sound C C

M1 [*R i n)

< 1 2

‘On;ugi(h:yylm. “Discussion of Difficulties in Euclid,” Scripts Mathematica V. 24, pp. 275 - 303
(19%9).
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The first line of the table shows the name of each sound, and the second
line shows the corresponding number of vibrations. For example, under G we
see /., which means that G has */, vibrations in a second.

The names chosen here are actuaily those chosen in the scale. If C is the
natural C of the scale, then G has ¥/, as many vibrations as C. C, is the next
so-called C, which is usually called the octave of C

In this scale we have only three sounds. If we play C, G, and octave of C
on the piano, we can almost see how they sound. Of course, we cannot make
much music with three sounds,

3. Oriental Scale: Let us extend the idea of section 2 further. We take
the fifth and seventh harmonics of G ie., the sounds whose numbers of vibra-
tions are 5S¢ and 7c. We call these souads, respectively, E, and K,. We shall
explain the choice of the subscripts shortly. Let us compare these sounds with
C., the octave of C, and with C., the octave of C,. Note that 2¢ is the number
of vibrations of C,, and 4c is the number of vibrations of C.. Thus, if E, is a
sound with half as many vibrations as E., then we see that */, is the number of
vibrations of E,. Similarly, we can choose a sound K, whose number of vibra-

tions is "/.. If we compare these sounds according to their pitch, we get them
in the order C,, E,, K,, C.. This is clear because

2<2<l<a.
Since these sounds are all harmonics of C, the sounds E and K,_which have
half as many vibrations as E, and K,, respectively, i.e., "/, and */,, are also

harmonics of C. As in section 2, we can make a table as follows:

Sound CIEJG|K |G

¢ i 2

F 417
(TP
F-NEN ]

These five sounds together approximately constitute the oriental scale,

4. Middle-East Scale: If we proceed with what was done in section 3,
we get more sounds in the scale. Since the sounds with vibrations 2c, 4, 8¢, 16c,
etc. do not contribute to the scale, we choose the sounds between them. In
particular, let us call D, the sound with 9¢ vibrations. We also choose P,, H,,
and B, with vibrations, respectively, 11c, 13c, and 15c. As before, we may
choose D,, P,, H,, and B, with vibrations *”/ o', and ", respectively.
Then we choose D, P, H, and B with vibrations "/, "'/, 1"/ and 15/ w TESPEC-
tively. We shall construct a table as before,

Sound | CI DI EIPI{G|[H|K] B]uc
|23l 313 711s )
¢ 81 48] 218!1% |3

A scale may be made out of these sounds with eight names in the scale
instead of seven. Before we discuss this set of sounds, we make a table using
the theoretical (physical) sounds of the scale.

12
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sosmd JCIDJE|F|lGlAalB]cC
9l s|4alt3]|s]s
c 1t gl a3 213382

If we compate P and F, we see that that the ratio of the number of
vibrations of P to the number of vibrations of F denoted by
P11 4 33
F 8 3 13
This shows that P is sharper than F. This is where the middie-east music is
different from the physical scale. The sound H with 1/ vibrations is not used
in the middle-east music. Thus, C, D, E, P, G, K, B, C, approximately con-
stitute the sounds of the middle-east scale. We see that
K _1 5 _21
A4 32
Therefore, K is also sharper than A.
5. Tones and bhalf-tones: If we study the physical scale, we observe that

D_9 E_10 F_16 G_9 A_10B8B_23 G _ 16

c~3'D-9'E 15F 8'G 9'A 8'B 15
This suggests the idea of small and large intervals or tones and half-tones. We
shall write this as follows:

Sound | C

i 1

L {
—Y

o

G
¥
1
]
$
1
A

——
e e =d I

e
O

1
5

e
-t

Tone

The above table indicates which interval is a tone and which is a half-tone.
For example, between E and F is a half-tone. But, we really should say large
and small intervals.

6. Geometric Progression: An ordered set of numbers is called a
geometric progression when the ratio of each one to its predecessor is always

the same. For example, the set
s, 10, 20, 40, 80,....

is a geometric progression. The ratio is 2, that is, the ratio of each number to
the one before it is two. Indeed, we can produce as many members of this set
as we desire.

If one member of a set and the atio are given, we can always produce
as many members as needed. For example, if 13 isa member of the progression
and the ratio is V2, then we can write some of the members of this progression,

such as 11 1 _ 1 1
5 V% 3 (ﬂ)(ﬂ)~~2—(v‘2'),3—(\’2’)....

2. Geometric Means: For two numbers, the geometric mean of them
is the square root of the product of them. ‘This is a sort of average, similar to
one-half of the sum, which is called the arithmetic mean. As for the arithmetic
average of a few numbers, we add them and divide the sum by the number of

13
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them; for the geometric mean of a few numbers we muldiply them and ke
the root of order equal to the number of them, For example, the geometric

mean of
5, 1, 2 &6

VOTD® = vam .

8. Modern Scale: Since two sounds are compared in terms of the ratio
of their number of vibrations rather than the difference of the number of vi-
brations, in order ro make aj} intervals equal and call each one a "half tone,”
we need to take the geometric mean of twelve half-tones of the scale. Thus the
number of vibrations of the sounds in the modern scale form g geometric
progression which has 1 as a member and V2 as its ratio. Thus the modern
scale can be shown in the following table:

is

Sound C D E F G A B | &)
c I (ﬂﬂ)l (u\/'z)c (u v‘z)l {n‘fz)t (ﬂﬁ)‘ (n Vz)u 2

As we observe, the power of V7 increases by 2 whenever we have a tone:
and it increases by one whenever we have a half-tone.

The modern scale is not really as natural to the ear as the old Greek scale:
but with slight training, the ear gets used to jt. The important fact is thae
modulation from one key to another becomes extremely easy.

There is one disadvantage in the modern scale, namely, the third har-
monic of C, ie., G, becomes slightly flat. The sound G is caljed the dominant
of the scale and, being flat, makes the music dull. We shall show thijs fact
mathematically. In the modern scale

G vy = 1408
C
But, in the natural scale
G =3 = 1.5
C 2 )

This mistake is always corrected in the violin. This s one of the reasons that
an orchestra with string instrumenes sounds much better than a piano solo,

section 8. This is called "C ajor” since it starts with C. C js also called the
tonic of the scale. In any major key, the sound (notes) of the scale have the
same relation to one another as the ones in C major. That is, the interval be-
tween the third and fourth elements js one half-tone; also the interval berween
the seventh and eighth elements is a half-tone, and the other intervals are all
one tone,

The next major key is G major. This has been chosen for two reasons,
One is that the note G is the third harmonic of C; the other is that this key
has a higher pitch. Note that 8oing from C to its second harmonic does not
change the scale. The table of the scale of this key is as follows:

14



Sound G A B C D1 E: 20 G,
e eV | evey | evar] 2 [evae | evar) eva” “vy)®

We observe that in order to have the interval berween the seventh and
cighth, i.e., subtonic and tonic, a half tone, we have to use F,& (F, sharp)
with vibrations (**VZ) ' instead of F, with (V'

If we choose the fifth note of this scale as the first of a new scale, we get
the key of D major. This key needs two sharps.

The reader may try this idea and work out tables for several major keys
which come after G major.

As it was possible to get major keys with higher pitch, it is also possible
to get major keys with lower pitch.

Suppose we look at the table in section 8 and consider a scale for which
the fifth note is C. This will have the following table:

Sound F. G. A. B." C D E F
e (ﬂ V’z)! {u \/'2)-! (ﬂ m-l (ﬂ v‘!)J 1 (ﬂ \fz)l (ﬂ ﬂ)l (\l ﬂ)l

Here we have to use B,b, ie, B flat, in order to have the interval between the
third and fourth notes be a half-tone.

If we proceed in this way, each lower key has an extra flar. We leave it
to the reader to produce many major keys and write tables for the corresponding
scales.

10. Minor Keys: To imitate the crying sound of middle-east music,
minor keys seem to be proper. Most older pieces written in minor keys avoid
the very large interval followed by a half-tone, but we find this combination
of sounds in recent pieces.

Many forms of minor keys have been considered. We shall describe only
_ one of the most recent pieces.

To obtain a new scale, instead of going to the third harmonic of C, we
may go to the fifth harmonic of C. But, this key is not the simplest minor key.
Thus we move down to A, whose fifth harmonic is approximately C. The table
of the scale for A minor is the following:

Sound A. B. C D B F G# A
c eV evh 1T evY eV | eV | evYy V2

As the physical scale shows, it is desirable to have a half-tone interval between
the subtonic and the tonic of a scale. This brings G# into the scale. As we see,
the interval between F and G4 is one and a half rones.

Other minor keys are obtained from this in a manner similar to that by
which the major keys are obtained from C major. We leave it to the reader to
obtain them.

It would be very interesting for one to compare his knowledge of music
with what has been said here.

15
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Numbers and the Music of the East and West
ALI R. AMIR-MOEZ

Let C be a sound whose number of vibrations is ¢. Having heard C, any
sound with number of vibrations equal to éc, £ =1, 2, ..., is pleasant t0 hear.
These sounds are called the harmonics of C. If we play a few of these sounds
successively with some rhythm, a pleasant melody is made. If we play a few
of these sounds together, a rich sound comes out and it is called harmony. A
sound C with vibrations 2¢ is called the octave of C.

Let us consider two octaves of C, say C' and "', and construct the follow-
ing table.

Sound C cia¢|c

c 1 2 3 4

niw | Q

As shown in the table let G' be the third harmonic of C. Since the sound
G with 3¢ vibrations is pleasant to be heard with C, it is reasonable to think

that G with half as many vibrations, i. e., —¢, would also make harmony with

C. In fact this soand is called the dominant of the scale. This way we obtain
only three sounds in the scale. Now in order to get more sounds in the scale
let us consider three octaves of C, say C', C", and C'"". Let us construct the fol-
lowing table.

m

Sound | C ct

Q

Gl Kl CM EM G" K“ C"u

c |1 2123+ 45|66} 7}8

S lm
e
BN R
NI
[(SRES}

As shown in the table the Sth harmonic of C is called E". Again it is

conceivable that since E' is a harmonic of C, also E' with vibrations —c¢, and E

with vibrations —¢ will be harmonic with C. A similar process can be used for

the 7th harmonic of C. called K", and K', K could be found accordingly. This
sound K is missing in the physical scale. If we consider only these five sounds,
the scale will be as follows:

c

Sound | C | E
5

miw | Q
FISER-

c 1 2

4

An approximation of these sounds appears frequently in the music of the
Far East.

Now let us consider four octaves of C, say C', C"', "', and C". In order to
get more sounds in the scale, we construct the following table by considering
the harmonics of orders 9, 10, 11, 12, 13, 14, and 15 of C, and putting tones

with — of these frequencies in the scale.
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SnundCDEPGHKBC"C“C'"D‘“E”‘F"G'"H“’K‘“B"’C"
9isiit|3 l1al7 lis
2151113 1317 1S 10f11f12{13) 141516

¢ ‘84828432‘89

Now theorerically speaking the sounds of the scale stand as follows:
| Sund|c|p|E|Fleclalalc

9!slalals]is
c[Ms|sl3l3]3 8|2

Comparing this table with the previous one we see thae

i. ¢, P is sharper than F. Some people are of the opinion that half of a
half tone exists in the music of the middle east, but this is not true. The differ-
ence is actually the use of P instead of F. As we shall show in the modern or
practical scale, F is slightly sharper in theorerical scale, but it is still too flat to
be equal to P.

We see also that H and K are replaced by A. An experiment at the School
of Science, University of Teheran, made it certain that H, i. e, the 13th har-
monic of C does not exist in the music of the middle east. But K is also used

instead of A. The ratio
Kia=1.5 _2
. _4l3

T 20
shows that K is sharper than A.
Now if we look at the intervals in the theoretical scale we see that
~_9 .n_ 10 16 g 10 Q 16
D.C—.~.E.D_—-—, == G F=Z 4 ==,8:4==, SB = 2,
8 QFEstFSAGgBA sdeB 1s

This has suggested the idea of tones and half tones for today’s music. Looking
at the preceding intervals we have approximately 12 half tones between C and
C'. In practical scale all half tones are at equal intervals, ie., we have to have

ie 210 16 9 10 9 16
‘89 1S58 9 § 1§

Therefore the geometric mean, considering 12 half tones, will be *VZ. We can
really describe each half tone as a term in a 8tometric progression whose first
term is 1 and its ratio is '* V3,

Let us compute the ratio of the dominant and the tonique, i, ¢, G:C.
Clearly G is the 8th term of the progression and its frequency will be

18




("V3)' = 1.498 which is a linle more flat than _23_ = 1.5. This is the place

that in violin is always corrected. The advancage of the modern scale is that

modulation from one key to another is vexz convenient. In fact musicians say:
“1f the sensitive ear of a musician does not distinguish these slight differences of
sounds, the mathematicians ear of course wouldn't distinguish them either.”

But the musician’s ear has been trained to appreciate the sounds of prac-
tical scale. However any simple melody of this sort sounds harsh to a Persian
tribesman.
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Sebastian and the Wolif
THEODORE C. RIDOUT

This is nor another parody on Little Red Ridinghood. It is rather 2 tale
of how a musician battled a “wolf,” and how a schoolteacher fought the same
fight in the classroom.

The “wolf” we are interested in is a beast that plagued the makers of
musical instrumenss for many centuries. Although many attacked him with
vigor, and Johann Sebastian Bach laid him fairly low, the ghost of the cricter
still haunts our concert halls and keeps turning up in the physics laboratory.
Since he has a mathematical origin, it seems fitting that we should discuss him
in these pages.

The problem is something like this. You rune your violin by fifths, ad-
justing string tension until you hear a perfect fifth when two strings are
sounded together. The fifth is a basic unit in musicai tuning.

But so, also, is the octave. Take a very simple one-stringed instrument,
Pythagoras’ monochord. Every time we quadruple the tension on the string we
double the rate of vibration, and the tone goes up an octave. Starting at a
single vibration per second, the process of doubling the frequency of vibration
takes us up in geometric progression to frequencies of 2, 4, 8, 16, . .. until we
reach 256, where we pause for breath and call the tone "middle C." If we
double again we get “upper C," at a frequency of 512 per second, and so on,
until the pitch is too high for even your dog to hear.

According to the laws of physics, if C has a frequency of 256, the perfect
fifeh above it, G, will have a frequency of 256 X 1.5, which is 384. Here C:G
— 1:1.15, or 4:6. Moreover the triad (or chord) CE-G sounds best if the
frequencies of these notes have the exact ratio 4:5:6. These combinations are
pleasing to the ear because the harmonics, or overtones, as well as the funda-
mental topes, combine with a minimum of conflicts or undesitable beats.

Filling in, we have the following notes and their relative frequencies:
. 9 S 4 Y- f - kY- Af-F k)-B(Y k)~
€ (frequency k) - D ¢ k) E( . k) F( 5 k)-0(7 %) A(3 k)-B( k)-C2h
This is known as a pure scale, and its tones have exact harmonic relations to

the keynote. Music played on an instrument so tuned sounds rich and ethereally
beautiful.

So much for theory. I will now retire to my workshop and construct a
piano. Starting at a very low C (about 32 vibrations per second) I go up bv
perfect fifths along the musical alphabet. The notes will be C, G, D,A,E Bt .
C#, G&, Ep, Bb, F, and C. From bottom C to top C is just seven octaves. This
looks like the beginning and the end of a complete and perfect keyboard, and
I flacter myself I can fill in the other notes in proper ratios to make a shining
row of ivories. But first I had better check my fifths.

Going up from C to G, I increased my frequency by the correct factor,
1.5. From G up to D, I again multiplied by 1.5. In all, I multiplied twelve
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times by chis factor, so that my top C vibrases at a frequency that is (15)"
times that of the bottom C, or 129.75 times the criginal.

But suppose I go up by octaves? Starting at the same C as before and
doubling frequency until ] haye gone up seven ocraves, I arrive at a frequency
that is 2', or 128, times the original. T now have tuo top C’s, and there is a
difference of about a quarter of a semitone between them, Whar to do?

Various solutions have been offered. For many centurid® a compromise

A musical composition involving this overgrown interval would be any-
thing but harmonious, and might even howl like a wolf in the forest; hence the
interval came to be known as the quinte-de-loup, or wolf fifth. One could play
only in certain keys that did not run afoul of this beast.

Mathematicians of course came to the rescue, bue their aid was not always

appreciated. As far back as 1482 3 Spaniard named Bartolo Rames proposed
 an equalized tuning in which all semitones  tould go up in the ratio of *V/3,
or 1.05946 times the note below. This divides the error exactly between suc-
cessive intervals, slighely reducing each fifth. so thar a complete set of twelve
fifths can begin and end on exactly the sam: cones as a set of seven octaves,
With the intervening nores filled in, we have a slightly imperfect but very
useful tuning known as equal temperament,

This solution made little headway, in spite of various advocates, until the
appearance of a mighty figure on the scene, This was none other than Johann
Sebastian Bach, who proposed equal temperament for all keyboard instruments,
and proceeded to tune his clavichord and harpsichord accordingly. He was
thus able to play in any one of the tweleve possible keys, and could modulate
from one key to another without encountering any wolves,

To demonstrate the system he composed a series of twenty-four preludes
and fugues, making use of all twelve keys. This was in 1722, He later re.
peated the process, giving us in all forty-cight pieces under the title “The Well-
Tempered Clavichord.” The term “well-tempered” of course refers to equal
temperament. It is generally agreed thar this work was chiefly responsible
for the present universal use of equsl temperament.

It was many generations beiore the mean-tone scale was abandoned in
the tuning of pipe organs; and Bach was forced to compromise with the wolf
at the cor-ole. For this reason his organ compasitions are written only in the
simpler ke .

My a. :bra class was naturally interested in all this. Plainly '*V7 raised
to the twelfth power is 2, so that twelve semi-tones will fie perfectly into an
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octave, forming a continuous chromatic scale. We checked the value of the
radical on a slide rule. The physics department demonstrated a sound disk for
us, proving to all the neighborhood that the frequencies under discussion pro-
duced 2 musical scale. The disk contained 8 rows of holes, corresponding to the
notes. of the scale, as follows: C (24 holes), D (27), E (30), F (32),G (306),
A (40), B (45), C (48). When spun by an electric motor and played upon
with a jet of compressed air, such a disk gives off "musical” tones approach-
ing the power of a steam calliope, and in the exact harmonic ratios of the pure
scale.

My students wrote papers on such topics as the clavichord, pipe organs,
orchestration, electronic instruments, acoustics, and so on. One or two whose
musical background was stronger than the mathematical were somewhat
shocked to find figures encroaching on the province of the Muse. These dis-
senters were cheered, however, to know that Robert Smith in 1759 charac-
terized equal temperament as “extremely coarse and disagreeable,” and that
Helmholtz in 1852 considered that it made every note on the piano sound
“false and disagreeable,” and that on the organ it produced a "heilish row.”
Helmholtz had used just intonation, as he called it, or pure tuning, for his
experimental harmonium, and like many a musical expert, became so con-
ditioned to perfect harmonies that he found those of equal temperament very
distasteful.

Thus, thanks to the Queen of Sciences, the "wolf” has now become a
thing of the past, though my young daughter tells me that one or two of his cubs
show up occasionally at the high-school band rehearsals.
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FOR FURTHER READING AND STUDY

The following references are not all equally significant. Some of them
are quite general, others are cither more scholarly or more technical. All of
them, however, are relevant. Those that are probably most illuminating and
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labeled does not imply that the reference is any way unscholarly or without merit.
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